15 research outputs found

    Nitric oxide regulates skeletal muscle fatigue, fiber type, microtubule organization, and mitochondrial ATP synthesis efficiency through cGMP-dependent mechanisms

    Get PDF
    Aim: Skeletal muscle nitric oxide–cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. Results: GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1−/− muscle. Functional analyses of GC1−/− muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA–IIX fiber balance. Force deficits in GC1−/− muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. Innovation: GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. Conclusions: These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency

    Exercise modulates redox-sensitive small GTPase activity in the brain microvasculature in a model of brain metastasis formation.

    No full text
    Tumor cell extravasation into the brain requires passage through the blood-brain barrier (BBB). There is evidence that exercise can alter the oxidation status of the brain microvasculature and protect against tumor cell invasion into the brain, although the mechanisms are not well understood. In the current study, we focused on the role of microenvironment generated by exercise and metastasizing tumor cells at the levels of brain microvessels, influencing oxidative stress-mediated responses and activation of redox-sensitive small GTPases. Mature male mice were exercised for four weeks using a running wheel with the average voluntary running distance 9.0 ± 0.3 km/day. Mice were then infused with 1.0 × 10(6) D122 (murine Lewis lung carcinoma) cells into the brain microvasculature, and euthanized either 48 hours (in short-term studies) or 2-3 weeks (in long-term studies) post tumor cell administration. A significant increase in the level of reactive oxygen species was observed following 48 hours or 3 weeks of tumor cells growth, which was accompanied by a reduction in MnSOD expression in the exercised mice. Activation of the small GTPase Rho was negatively correlated with running distance in the tumor cell infused mice. Together, these data suggest that exercise may play a significant role during aggressive metastatic invasion, especially at higher intensities in pre-trained individuals

    Exercise modulates redox-sensitive small GTPase activity in the brain microvasculature in a model of brain metastasis formation.

    Get PDF
    Tumor cell extravasation into the brain requires passage through the blood-brain barrier (BBB). There is evidence that exercise can alter the oxidation status of the brain microvasculature and protect against tumor cell invasion into the brain, although the mechanisms are not well understood. In the current study, we focused on the role of microenvironment generated by exercise and metastasizing tumor cells at the levels of brain microvessels, influencing oxidative stress-mediated responses and activation of redox-sensitive small GTPases. Mature male mice were exercised for four weeks using a running wheel with the average voluntary running distance 9.0 ± 0.3 km/day. Mice were then infused with 1.0 × 10(6) D122 (murine Lewis lung carcinoma) cells into the brain microvasculature, and euthanized either 48 hours (in short-term studies) or 2-3 weeks (in long-term studies) post tumor cell administration. A significant increase in the level of reactive oxygen species was observed following 48 hours or 3 weeks of tumor cells growth, which was accompanied by a reduction in MnSOD expression in the exercised mice. Activation of the small GTPase Rho was negatively correlated with running distance in the tumor cell infused mice. Together, these data suggest that exercise may play a significant role during aggressive metastatic invasion, especially at higher intensities in pre-trained individuals

    Peroxide and superoxide levels in brain microvessels of tumor cell-infused exercises and sedentary mice.

    No full text
    <p>Mice were exercised as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0097033#pone-0097033-g001" target="_blank">Figure 1</a> with sedentary mice housed in cages with locked wheels. Following exercise period, mice were infused with either 1.0×10<sup>6</sup> D122 lung carcinoma cells (tumor) or cell culture media (vehicle) and euthanized 48 h (short-term studies) or 2–3 weeks (long-term studies) post tumor cell infusion. Tissue peroxides were measured by 2′,7′-dichlorofluorescein (DCF) fluorescence (<b>A</b> and <b>B</b>) and superoxide levels by dihydroethidium (DHE) fluorescence (<b>C</b>, and <b>D</b>) in freshly isolated brain microvessels. Representative DHE florescent images of freshly isolated brain microvessels visualized by staining (<b>C</b>, <b>right panel</b>). (<b>D</b>) Exercise distance negatively correlated (Pearson’s r = −0.9782) with DHE fluorescence in the tumor cell infused mice. Values are mean ± SEM, *compared to the sedentary plus vehicle group, p<0.05; +compared to sedentary plus tumor group, p<0.05; #compared with the exercised plus vehicle group, p<0.05; n = 4–15 per group.</p

    Expression of antioxidative enzymes in brain microvessels of tumor cell-infused exercised and sedentary mice.

    No full text
    <p>Mice were exercised and infused with tumor cells as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0097033#pone-0097033-g002" target="_blank">Figure 2</a>, followed by evaluation of protein expression of antioxidative enzymes, MnSOD (<b>A</b>, <b>B</b>), Cu/ZnSOD (<b>C</b>), catalase (<b>D</b>), and GPx (<b>E</b>) in isolated brain microvessels by immunoblotting. The images show representative Western blots and the bar graphs reflect quantitative data from n = 6–9 per group. Values are mean ± SEM; *compared to the sedentary plus vehicle group, p<0.05; +compared to the sedentary plus tumor group, p<0.05; #compared to the exercise plus vehicle, p<0.05.</p

    Small GTPase activity in brain microvessels of tumor cell-infused exercised and sedentary mice.

    No full text
    <p>Mice were exercised and infused with tumor cells as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0097033#pone-0097033-g002" target="_blank">Figure 2</a>, followed by evaluation of active forms of Rac1 (<b>A</b>), Ras (<b>B</b>), and Rho (<b>C</b>) in isolated brain microvessels. Activation was determined using pull down assays for active (GTP-bound) GTPases, followed by immunoblotting for specific protein. In addition, a correlation between running distance and GTPase activity was determined by Pearson’s r (<b>A–C</b>). Images show representative immunoblotting from n = 8–17 and the bar graphs reflect quantitative data from these experiments. Values are mean ± SEM *compared to the sedentary plus vehicle group at p<0.05; #compared to the exercise plus vehicle group at p<0.05.</p

    Variations in running activity in exercised mice.

    No full text
    <p>Mice were adapted to exercise and solitary living for one week, followed by voluntary wheel running for four weeks. (<b>A</b>) Running distance for individual mice used in the study in the last four weeks. High runners (black) run more than 10.2 km/day, mid-runners (gray), between 7.8–10.2 km/day, and low runners (white), less than 7.8 km/day. Average running distance over the four weeks of exercise was 9.0±0.3 km/day. (<b>B</b>) Time spent on running activity (hrs/day) and (<b>C</b>) speed of running. Running time and speed increased gradually during the adaptation period, then remained steady for four weeks of exercise. Average time was 9.6±0.2 hrs/day and average speed was 0.9±0.0 km/hr. Values are mean ± SEM; n = 55.</p
    corecore